SADLER UNIT 3 MATHEMATICS SPECIALIST

WORKED SOLUTIONS

Chapter 3: Functions

Exercise 3A

Question 1

f(x) = x+1, g(x) = 2x-3, initial domain $\{0, 1, 2, 3, 4\}$

a
$$\{0,1,2,3,4\} \xrightarrow{f(x)} \{1,2,3,4,5\} \xrightarrow{g(x)} \{-1,1,3,5,7\}$$

The range is $\{-1, 1, 3, 5, 7\}$.

b
$$\{0,1,2,3,4\} \xrightarrow{g(x)} \{-3,-1,1,3,5\} \xrightarrow{f(x)} \{-2,0,2,4,6\}$$

The range is $\{-2, 0, 2, 4, 6\}$.

c
$$\{0, 1, 2, 3, 4\} \xrightarrow{g(x)} \{-3, -1, 1, 3, 5\} \xrightarrow{g(x)} \{-9, -5, -1, 3, 7\}$$

The range is $\{-9, -5, -1, 3, 7\}$.

 $f(x) = x+3, g(x) = (x-1)^2, h(x) = x^3, \text{ initial domain } \{1,2,3\}$ **a** $\{1,2,3\} \xrightarrow{f(x)} \{4,5,6\} \xrightarrow{g(x)} \{9,16,25\}$

The range is $\{9, 16, 25\}$.

b
$$\{1, 2, 3\} \xrightarrow{h(x)} \{1, 8, 27\} \xrightarrow{g(x)} \{0, 49, 676\} \xrightarrow{f(x)} \{3, 52, 679\}$$

The range is $\{3, 52, 679\}$.

c
$$\{1, 2, 3\} \xrightarrow{f(x)} \{4, 5, 6\} \xrightarrow{g(x)} \{9, 16, 25\} \xrightarrow{h(x)} \{729, 4096, 15625\}$$

The range is $\{729, 4096, 15625\}$.

Question 3

f(x) = x + 5, g(x) = x - 5

- **a** For f(x) the domain is $\{x \in \mathbb{R}\}\$ and the range is $\{y \in \mathbb{R}\}\$
- **b** For g(x) the domain is $\{x \in \mathbb{R}\}\$ and the range is $\{y \in \mathbb{R}\}\$
- **c** For f(x) + g(x) the domain is $\{x \in \mathbb{R}\}\$ and the range is $\{y \in \mathbb{R}\}\$
- **d** For f(x) g(x) the domain is $\{x \in \mathbb{R}\}$ and the range is $\{y \in \mathbb{R} : y = 10\}$
- **e** For $f(x) \cdot g(x) = x^2 25$ the domain is $\{x \in \mathbb{R}\}$ and the range is $\{y \in \mathbb{R} : y \ge -25\}$

f For
$$\frac{f(x)}{g(x)} = \frac{x+5}{x-5}$$
 the domain is $\{x \in \mathbb{R} : x \neq 5\}$ and the range is $\{y \in \mathbb{R} : y \neq 1\}$

f(x) =	$3x+2, g(x) = \frac{2}{x}, h(x) = \sqrt{x}$
а	$\frac{2}{3x+2} = g \circ f(x)$
b	$\sqrt{3x+2} = h \circ f(x)$
С	$\frac{6}{x} + 2 = f \circ g(x)$
d	$3\sqrt{x} + 2 = f \circ h(x)$
е	$\frac{2}{\sqrt{x}} = g \circ h(x)$
f	$\sqrt{\frac{2}{x}} = h \circ g(x)$
g	$9x + 8 = f \circ f(x)$
h	$x^{0\cdot 25} = h \circ h(x)$
i	$27x + 26 = f \circ f \circ f(x)$

Question 5

f(x) = 2x-3, g(x) = 4x+1, $h(x) = x^2+1$ $f \circ f(x) = 2(2x-3) - 3 = 4x - 9$ а $g \circ g(x) = 4(4x+1) + 1 = 16x + 5$ b $h \circ h(x) = (x^{2} + 1)^{2} + 1 = x^{4} + 2x^{2} + 2$ С $f \circ g(x) = 2(4x+1) - 3 = 8x - 1$ d $g \circ f(x) = 4(2x-3) + 1 = 8x - 11$ е $f \circ h(x) = 2(x^2 + 1) - 3 = 2x^2 - 1$ f $h \circ f(x) = (2x-3)^2 + 1 = 4x^2 - 12x + 10$ g $g \circ h(x) = 4(x^2 + 1) + 1 = 4x^2 + 5$ h

i $h \circ g(x) = (4x+1)^2 + 1 = 16x^2 + 8x + 2$

$$f(x) = 2x + 5, g(x) = 3x + 1, h(x) = 1 + \frac{2}{x}$$

a $f \circ f(x) = 2(2x + 5) + 5 = 4x + 15$
b $g \circ g(x) = 3(3x + 1) + 1 = 9x + 4$
c $h \circ h(x) = 1 + \frac{2}{1 + \frac{2}{x}} = 1 + \frac{2}{x + \frac{2}{x}} = 1 + 2 \times \frac{x}{x + 2} = \frac{x + 2 + 2x}{x + 2} = \frac{3x + 2}{x + 2}$
d $f \circ g(x) = 2(3x + 1) + 5 = 6x + 7$
e $g \circ f(x) = 3(2x + 5) + 1 = 6x + 16$
f $f \circ h(x) = 2\left(1 + \frac{2}{x}\right) + 5 = 2 + \frac{4}{x} + 5 = \frac{7x + 4}{x} = \frac{7x}{x} + \frac{4}{x} = 7 + \frac{4}{x}$
g $h \circ f(x) = 1 + \frac{2}{2x + 5} = \frac{2x + 5 + 2}{2x + 5} = \frac{2x + 7}{2x + 5}$
h $g \circ h(x) = 3\left(1 + \frac{2}{x}\right) + 1 = 4 + \frac{6}{x}$
i $h \circ g(x) = 1 + \frac{2}{3x + 1} = \frac{3x + 3}{3x + 1} = \frac{3(x + 1)}{3x + 1}$

Question 7

$$f(x) = x - 4, g(x) = \sqrt{x}$$

 $g[f(x)] = \sqrt{x - 4}, x \ge 4$

Domain $\{x \in \mathbb{R} : x \ge 4\}$

Question 8

$$f(x) = 4 - x, g(x) = \sqrt{x}$$
$$g[f(x)] = \sqrt{4 - x}, x \le 4$$

Domain $\{x \in \mathbb{R} : x \le 4\}$

$$f(x) = 4 - x^{2}, g(x) = \sqrt{x}$$
$$g[f(x)] = \sqrt{4 - x^{2}}, -2 \le x \le 2$$
Domain { $x \in \mathbb{R} : -2 \le x \le 2$ }

Question 10

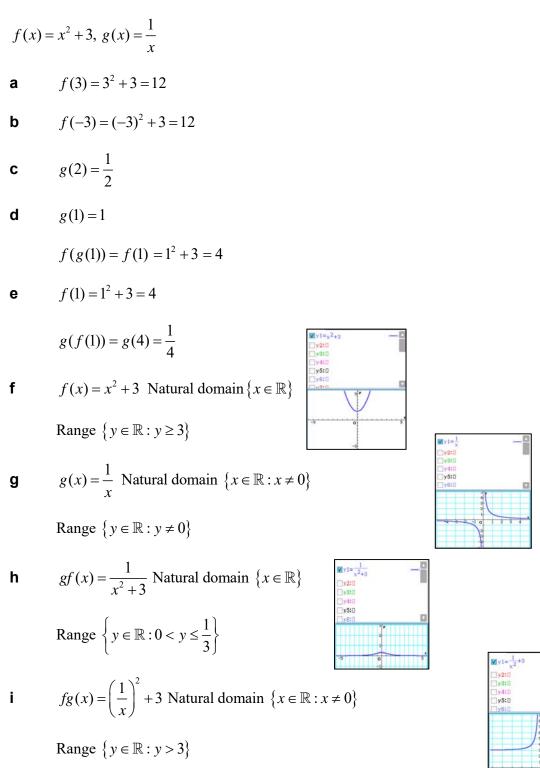
$$g[f(x)] = \sqrt{4 - |x|}, -4 \le x \le 4$$
$$f(x) = 4 - |x|, \ g(x) = \sqrt{x}$$

Domain $\{x \in \mathbb{R} : -4 \le x \le 4\}$

Question 11

$$f(x) = x+3, \ g(x) = \sqrt{x-5}$$
$$g[f(x)] = \sqrt{x+3-5} = \sqrt{x-2}, \ x \ge 2$$
Domain { $x \in \mathbb{R} : x \ge 2$ }

$$f(x) = x - 6, \ g(x) = \sqrt{x + 3}$$
$$g[f(x)] = \sqrt{x - 6 + 3} = \sqrt{x - 3}, \ x \ge 3$$
Domain $\{x \in \mathbb{R} : x \ge 3\}$



f(x) =	$=25-x^2, g(x)=\sqrt{x}$	
а	$f(5) = 25 - 5^2 = 0$	
b	$f(-5) = 25 - (-5)^2 = 0$	
С	$g(4) = \sqrt{4} = 2$	
d	$fg(4) = f(\pm 2) = 25 - 2^2 = 21$	
е	$gf(4) = g(25 - 16) = g(9) = \sqrt{9} = 3$	
f	the natural domain of f is $\{x \in \mathbb{R}\}$, the range of f	$f \text{ is } \{ y \in \mathbb{R} : y \le 25 \}$
g	the natural domain of g is $\{x \in \mathbb{R} : x \ge 0\}$	
	the range of g is $\{y \in \mathbb{R} : y \ge 0\}$	
h	the natural domain of gf is $\{x \in \mathbb{R} : -5 \le x \le 5\}$	define $f(x)=25-x^2$ done
	the range of gf is $\{y \in \mathbb{R} : 0 \le y \le 5\}$	define $g(x) = \sqrt{x}$ done
i	the natural domain of fg is $\{x \in \mathbb{R} : x \ge 0\}$	g(f(x)) $(-x^2+25)^{0.5}$
	the range of fg is $\{y \in \mathbb{R} : y \le 25\}$	f(g(x)) (-x ² +25) f(g(x)) -x+25

Question 15

the natural domain of $g \circ f(x)$ is $\{x \in \mathbb{R} : x \neq 1\}$ а the range of $g \circ f(x)$ is $\{y \in \mathbb{R} : y \neq 0\}$

the natural domain of $f \circ g(x)$ is $\{x \in \mathbb{R} : x \neq 3\}$ b

the range of $f \circ g(x)$ is $\{y \in \mathbb{R} : y \neq 2\}$

define f(x)=x+2	
	done
define $g(x) = \frac{1}{x-3}$	done
g(f(x))	uone
	$\frac{1}{x-1}$
f(g(x))	1
	$\frac{1}{x-3}+2$

a the natural domain of $g \circ f(x)$ is $\{x \in \mathbb{R} : x \ge 0\}$ the range of $g \circ f(x)$ is $\{y \in \mathbb{R} : y \ge -1\}$ **b** the natural domain of $f \circ g(x)$ is $\{x \in \mathbb{R} : x \ge \frac{1}{2}\}$

the range of $f \circ g(x)$ is $\{y \in \mathbb{R} : y \ge 0\}$

define $f(x) = \sqrt{x}$	
	done
define $g(x)=2x-1$	
	done
g(f(x))	
	$2 \cdot x^{0.5} - 1$
f(g(x))	
	$(2 \cdot x - 1)^{0.5}$
	(= ~ 1)

Question 17

a the natural domain of $g \circ f(x)$ is $\{x \in \mathbb{R} : x \neq 0\}$ the range of $g \circ f(x)$ is $\{y \in \mathbb{R} : y > 0\}$

b the natural domain of $f \circ g(x)$ is $\{x \in \mathbb{R} : x > 0\}$

the range of $f \circ g(x)$ is $\{y \in \mathbb{R} : y > 0\}$

define $f(x) = \frac{1}{x^2}$	
	done
define g(x)=√x	
	done
g(f(x))	
	$\left(\frac{1}{x^2}\right)^{0.5}$
f(g(x))	(4)
	$\frac{1}{x}$
	х

Question 18

The natural domain of g(x) is $\{x \in \mathbb{R} : x > 0\}$ f[g(x)] has a one-to-one relationship for $\{x \in \mathbb{R} : x > 0\}$, and hence it is a function. The natural domain of f(x) is $\{x \in \mathbb{R}\}$,

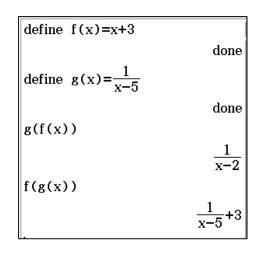
which includes values of x which are less than zero.

And hence g[f(x)] is not a function for the

natural domain of f(x).

define f(x)=x+3	
	done
define $g(x)=\sqrt{x}$	
	done
g(f(x))	
	$(x+3)^{0.5}$
f(g(x))	
	x ^{0.5} +3

The natural domain of g(x) is $\{x \in \mathbb{R} : x \neq 5\}$ f[g(x)] has a one-to-one relationship for $\{x \in \mathbb{R} : x > 0\}$, and hence it is a function. The natural domain of f(x) is $\{x \in \mathbb{R}\}$, which includes the value of x = 5 and hence g[f(x)]is not a function for the natural domain of f(x).



Ques	define $f(x)=x^2$	
а	The natural domain of $g \circ f(x)$ is $\{x \in \mathbb{R} : x \neq \pm 3\}$	define $f(x)=x^2-9$ define $g(x)=\frac{1}{x}$
	the range of $g \circ f(x)$ is $\left\{ y \in \mathbb{R} : y \le -\frac{1}{9} \right\} \cup \left\{ y \in \mathbb{R} : y > 0 \right\}$	g(f(x))
b	the natural domain of $f \circ g(x)$ is $\{x \in \mathbb{R} : x \neq 0\}$	f(g(x))
	the range of $f \circ g(x)$ is $\{y \in \mathbb{R} : y > -9\}$	

done

done

x²-9

 $\overline{x^2}$

Exercise 3B

Question 1

a f(x) = x

Natural domain is $\{x \in \mathbb{R}\}\$ and range is $\{y \in \mathbb{R}\}\$.

 $f^{-1}(x) = x$ with domain $\{x \in \mathbb{R}\}$ and range $\{y \in \mathbb{R}\}$.

So the function has an inverse on the natural domain.

Check: f(3) = 3 and $f^{-1}(3) = 3$.

b
$$f(x) = 2x+3$$

Natural domain is $\{x \in \mathbb{R}\}\$ and range is $\{y \in \mathbb{R}\}\$

$$f^{-1}(x) = \frac{x-3}{2}$$
 with domain $\{x \in \mathbb{R}\}$ and range $\{y \in \mathbb{R}\}$.

So the function has an inverse on the natural domain.

Check: f(3) = 9 and $f^{-1}(9) = 3$.

c f(x) = 5x - 3

Natural domain is $\{x \in \mathbb{R}\}\$ and range is $\{y \in \mathbb{R}\}\$

$$f^{-1}(x) = \frac{x+3}{5}$$
 with domain $\{x \in \mathbb{R}\}$ and range $\{y \in \mathbb{R}\}$.

So the function has an inverse on the natural domain.

Check: f(3) = 12 and $f^{-1}(12) = 3$.

d
$$f(x) = x^2$$

Natural domain is $\{x \in \mathbb{R}\}$

The function is not one-to-one, f(-1) = 1 and f(1) = 1, so the function does not have an inverse on the natural domain.

$$f(x) = (2x-1)^2$$

Natural domain is $\{x \in \mathbb{R}\}$

The function is not one-to-one, f(0) = 1 and f(1) = 1, so the function does not have an inverse on the natural domain.

$$\mathbf{f} \qquad f(x) = x^2 + 4$$

Natural domain is $\{x \in \mathbb{R}\}$

The function is not one-to-one, f(-1) = 5 and f(1) = 5, so the function does not have an inverse on the natural domain.

g
$$f(x) = \frac{1}{x}$$

Natural domain is $\{x \in \mathbb{R} : x \neq 0\}$ and range is $\{y \in \mathbb{R} : y \neq 0\}$

 $f^{-1}(x) = \frac{1}{x}$ with domain $\{x \in \mathbb{R} : x \neq 0\}$ and range $\{y \in \mathbb{R} : y \neq 0\}$, so the function has an inverse on the natural domain.

Check:
$$f(3) = \frac{1}{3}$$
 and $f^{-1}\left(\frac{1}{3}\right) = 3$

h $f(x) = \frac{1}{x-3}$

Natural domain is $\{x \in \mathbb{R} : x \neq 3\}$ and range is $\{y \in \mathbb{R} : y \neq 0\}$

$$f^{-1}(x) = \frac{1}{x} + 3$$
 with domain $\{x \in \mathbb{R} : x \neq 0\}$ and range $\{y \in \mathbb{R} : x \neq 3\}$

So the function has an inverse on the natural domain.

Check: f(2) = -1 and $f^{-1}(-1) = 2$.

$$\mathbf{i} \qquad f(x) = \frac{1}{x^2}$$

Natural domain is $\{x \in \mathbb{R} : x \neq 0\}$

The function is not one-to-one, f(-1) = 1 and f(1) = 1, so the function does not have an inverse on the natural domain.

Functions a, b, c, g, h have inverse functions on their natural domain.

Question 2

f(x) = x - 2

$$x \xrightarrow{-2} x - 2$$
$$x + 2 \xleftarrow{+2} x$$

 $f^{-1}(x) = x + 2$, Domain \mathbb{R} , Range \mathbb{R} .

f(x) = 2x - 5 $x \xrightarrow{x^{2}} 2x \xrightarrow{-5} 2x - 5$ $x \xrightarrow{x+5} 4x + 5 \xleftarrow{+5} x$

$$f^{-1}(x) = \frac{x+5}{2}$$
, Domain \mathbb{R} , Range \mathbb{R} .

Question 4

f(x) = 5x + 2 $x \xrightarrow{\times 5} 5x \xrightarrow{+2} 5x + 2$ $x \xrightarrow{\times 5} x - 2 \xleftarrow{-2} x$

$$f^{-1}(x) = \frac{x-2}{5}$$
, Domain \mathbb{R} , Range \mathbb{R} .

$$f(x) = \frac{1}{x-4}$$

$$x \xrightarrow{-4} x - 4 \xrightarrow{Invert} \frac{1}{x - 4}$$
$$\frac{1}{x} + 4 \xleftarrow{+4} \frac{1}{x} \xleftarrow{Invert} x$$

$$f^{-1}(x) = \frac{1}{x} + 4$$
, Domain $x \neq 0$, Range $y \neq 4$.

$$f(x) = \frac{1}{x+3}$$

$$x \xrightarrow{+3} x+3 \xrightarrow{Invert} \frac{1}{x+3}$$

$$\frac{1}{x}-3 \xleftarrow{-3} \frac{1}{x} \xleftarrow{Invert} x$$

$$f^{-1}(x) = \frac{1}{x} - 3$$
, Domain $x \neq 0$, Range $y \neq -3$.

Question 7

$$f(x) = \frac{1}{2x-5}$$

$$x \xrightarrow{x^{2}} 2x \xrightarrow{-5} 2x-5 \xrightarrow{Invert} \frac{1}{2x-5}$$

$$\frac{1}{2}\left(\frac{1}{x}+5\right) \xleftarrow{^{+2}} \frac{1}{x}+5 \xleftarrow{^{+5}} \frac{1}{x} \xleftarrow{Invert} x$$

$$x \xrightarrow{1(1-x)} 1 \xrightarrow{5} 1+5x$$

$$f^{-1}(x) = \frac{1}{2} \left(\frac{1}{x} + 5 \right) = \frac{1}{2x} + \frac{5}{2} = \frac{1+5x}{2x}$$
, Domain $x \neq 0$, Range $y \neq 2.5$.

Question 8

$$f(x) = 1 + \frac{1}{2+x}$$

$$x \xrightarrow{+2} x + 2 \xrightarrow{Invert} \frac{1}{x+2} \xrightarrow{+1} 1 + \frac{1}{x+2}$$

$$\frac{1}{x-1} - 2 \xleftarrow{-2} \frac{1}{x-1} \xleftarrow{Invert} x - 1 \xleftarrow{-1} x$$

$$f^{-1}(x) = \frac{1}{x-1} - 2$$
, Domain $x \neq 1$, Range $y \neq -2$.

$$f(x) = 3 - \frac{1}{x - 1}$$

$$x \xrightarrow{-1}{x - 1} x - 1 \xrightarrow{Invert}{x - 1} \frac{1}{x - 1} \xrightarrow{\times(-1)}{x - 1} - \frac{1}{x - 1} \xrightarrow{+3}{x - 1} 3 - \frac{1}{x - 1}$$

$$\frac{1}{3 - x} + 1 \xleftarrow{+1}{3 - x} \xleftarrow{Invert}{3 - x} \xrightarrow{\div(-1)}{x - 3} \xleftarrow{-3}{x}$$

 $f^{-1}(x) = 1 - \frac{1}{x-3} = \frac{1}{3-x} + 1$, Domain $x \neq 3$, Range $y \neq 1$.

Question 10

$$f(x) = 4 + \frac{2}{2x - 1}$$

$$x \xrightarrow{x^{2}} 2x \xrightarrow{-1} 2x - 1 \xrightarrow{Invert} \frac{1}{2x - 1} \xrightarrow{x^{2}} \frac{2}{2x - 1} \xrightarrow{+4} 4 + \frac{2}{2x - 1}$$

$$\frac{1}{x - 4} + \frac{1}{2} \xleftarrow{x^{2}} \frac{2}{x - 4} + 1 \xleftarrow{+1} \frac{2}{x - 4} \xleftarrow{Invert} \frac{x - 4}{2} \xleftarrow{+2} x - 4 \xleftarrow{-4} x$$

$$f^{-1}(x) = \frac{1}{x-4} + \frac{1}{2}$$
, Domain $x \neq 4$, Range $y \neq 0.5$.

Question 11

 $f(x) = \sqrt{x}$

$$\begin{array}{c} x \xrightarrow{\sqrt{x}} \sqrt{x} \\ x^2 \xleftarrow{x^2} x \end{array}$$

 $f^{-1}(x) = x^2$, Domain $x \ge 0$, Range $y \ge 0$.

 $f(x) = \sqrt{x+1}$ $x \xrightarrow{+1} x+1 \xrightarrow{\sqrt{x}} \sqrt{x+1}$ $x^{2}-1 \xleftarrow{-1} x^{2} \xleftarrow{x^{2}} x$

 $f^{-1}(x) = x^2 - 1$, Domain $x \ge 0$, Range $y \ge -1$.

Question 13

 $f(x) = \sqrt{2x - 3}$ $x \xrightarrow{x^2} 2x \xrightarrow{-3} 2x - 3 \xrightarrow{\sqrt{x}} \sqrt{2x - 3}$ $x^2 + 3 \xleftarrow{+2} x^2 + 3 \xleftarrow{+3} x^2 \xleftarrow{x^2} x$

$$f^{-1}(x) = \frac{x^2 + 3}{2}$$
, Domain $x \ge 0$, Range $y \ge 1.5$.

$$f(x) = 2x + 5$$

$$x \xrightarrow{\times 2} 2x \xrightarrow{+5} 2x + 5$$

$$x \xrightarrow{-5} 4x \xrightarrow{+2} x - 5 \xrightarrow{-5} x$$

$$f^{-1}(x) = \frac{x-5}{2}$$

$$g(x) = 3x + 1$$

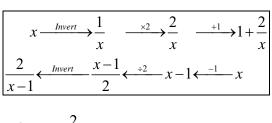
$$x \xrightarrow{\times 3} 3x \xrightarrow{+1} 3x + 1$$

$$x \xrightarrow{x \to 3} x - 1 \xleftarrow{-1} x$$

$$g^{-1}(x) = \frac{x - 1}{3}$$

Question 16

 $h(x) = 1 + \frac{2}{x}$



$$h^{-1}(x) = \frac{2}{x-1}$$

Question 17

$$f \circ f^{-1}(x) = 2\left(\frac{x-5}{2}\right) + 5 = x$$

Question 18

$$f^{-1} \circ f(x) = \frac{2x + 5 - 5}{2} = x$$

Question 19

$$f \circ h^{-1}(x) = 2\left(\frac{2}{x-1}\right) + 5 = \frac{4}{x-1} + 5$$

$$f \circ g(x) = 2(3x+1) + 5 = 6x + 7$$
$$(f \circ g)^{-1}(x) = \frac{x-7}{6}$$

Question 21

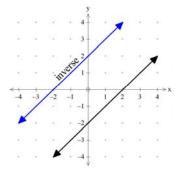
$$g^{-1} \circ f^{-1}(x) = \frac{\frac{x-5}{2}-1}{3} = \frac{1}{3}\left(\frac{x-7}{2}\right) = \frac{x-7}{6}$$

Question 22

$$f \circ g^{-1}(x) = 2\left(\frac{x-1}{3}\right) + 5 = \frac{2x+13}{3}$$

Question 23

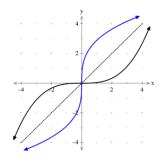
a Is a function, passes the vertical line test, one-to-one.



b Is not a function, for some values of x there is more than one y value.

c Is a function, not one-to-one.

- **d** Is not function, for some values of *x* there is more than one *y* value.
- **e** Is not function, for some values of *x* there is more than one *y* value.
- **f** Is a function, passes the vertical line test, one-to-one.



For f(x) restricted to $x \ge 0$ then $f^{-1}(x) = \sqrt{x-3}$, domain $x \ge 3$ and range $y \ge 0$. (or f(x) restricted to $x \le 0$ then $f^{-1}(x) = -\sqrt{x-3}$, domain $x \ge 3$ and range $y \le 0$.)

Question 25

For f(x) restricted to $x \ge -3$ then $f^{-1}(x) = -3 + \sqrt{x}$, domain $x \ge 0$ and range $y \ge -3$. (or f(x) restricted to $x \le -3$ then $f^{-1}(x) = -3 - \sqrt{x}$, domain $x \ge 0$ and range $y \le -3$.)

Question 26

For f(x) restricted to $x \ge 3$ then $f^{-1}(x) = 3 + \sqrt{x-2}$, domain $x \ge 2$ and range $y \ge 3$.

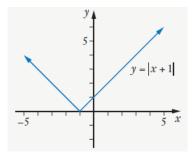
(or f(x) restricted to $x \le 3$ then $f^{-1}(x) = 3 - \sqrt{x-2}$, domain $x \ge 2$ and range $y \le 3$.)

Question 27

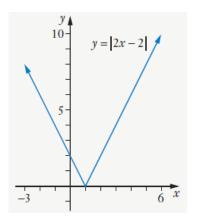
For f(x) restricted to $0 \le x \le 2$ then $f^{-1}(x) = \sqrt{4 - x^2}$, domain $0 \le x \le 2$ and range $0 \le y \le 2$. (or f(x) restricted to $-2 \le x \le 0$ then $f^{-1}(x) = -\sqrt{4 - x^2}$, domain $0 \le x \le 2$ and range $-2 \le y \le 0$.)

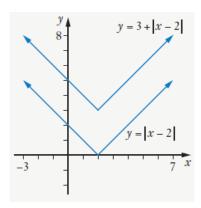
Exercise 3C

Question 1

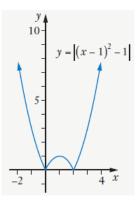


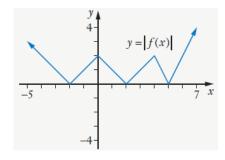
Question 2

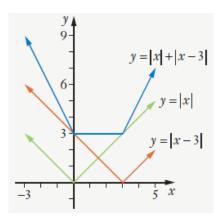


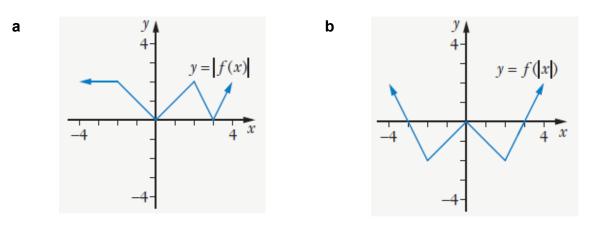


Question 4

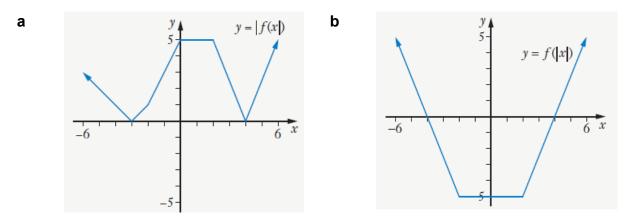








Question 8



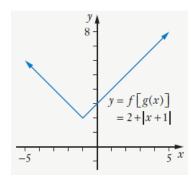
Question 9

In the first and fourth quadrants (see the diagram) the graph of y = g(|x|) will be the same as that of y = g(x). However, in the second and third quadrants the graph of y = g(|x|) will be those parts of y = g(x) that lie in the first and fourth quadrants, reflected about the y-axis.

Second quadrant Third quadrant Fourth quadrant

a The function $g(x) = (x+1)^2$ has domain \mathbb{R} and range $\{y \in \mathbb{R} : y \ge 0\}$. The function $f(x) = 2 + \sqrt{x}$ has domain $\{x \in \mathbb{R} : x \ge 0\}$ and range $\{y \in \mathbb{R} : y \ge 2\}$. Thus g(x) is defined for all real x and the output from g(x) consists of numbers that are all within the domain of f(x). Thus f[g(x)] is defined for all real x. $\mathbb{R} \to \boxed{g(x) = (x+1)^2} \to y \in \mathbb{R} : y \ge 0 \to \boxed{f(x) = 2 + \sqrt{x}} \to y \in \mathbb{R} : y \ge 2$ Thus f[g(x)] has domain \mathbb{R} and range $\{y \in \mathbb{R} : y \ge 2\}$.

b
$$f[g(x)] = 2 + \sqrt{(x+1)^2} = 2 + |x+1|^2$$



Question 11

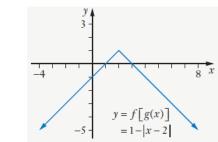
С

С

a The function $g(x) = (x-2)^2$ has domain \mathbb{R} and range $\{y \in \mathbb{R} : y \ge 0\}$. The function $f(x) = 1 - \sqrt{x}$ has domain $\{x \in \mathbb{R} : x \ge 0\}$ and range $\{y \in \mathbb{R} : y \le 1\}$. Thus g(x) is defined for all real x and the output from g(x) consists of numbers that are all within the domain of f(x). Thus f[g(x)] is defined for all real x. $\mathbb{R} \to \boxed{g(x) = (x-2)^2} \to y \in \mathbb{R} : y \ge 0 \to \boxed{f(x) = 1 - \sqrt{x}} \to y \in \mathbb{R} : y \le 1$

Thus f[g(x)] has domain \mathbb{R} and range $\{y \in \mathbb{R} : y \leq 1\}$.

b
$$f[g(x)] = 1 - \sqrt{(x-2)^2} = 1 - |x-2|$$

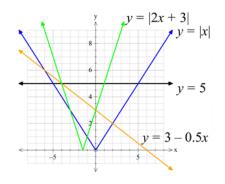


a x = 3,7

- **b** x = -2, 6
- **c** x = 4, 8

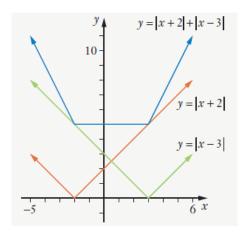
Question 13

a x = 1, -4b x = -6, 2c x = 0, -4d x = -1, -3



Question 14

 $\boldsymbol{a}, \boldsymbol{b} \text{ and } \boldsymbol{c}$



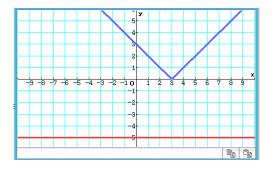
d $|x+2|+|x-3| \le 9$ for $-4 \le x \le 5$.

$$|x+6| = 1$$

 $x+6=1$ $-x-6=1$
 $x = -5$ $-x = 7$
 $x = -7$

|x-3| = -5

There is no solution as the magnitude of any number must be positive and not negative.



Question 17

|x-10| = |x-6| x-10 = -x+6 -x+10 = -x+6 2x = 16 $10 \neq 16$ x = 8 is the only solution

Question 18

$$|x+5| = |2x-14|$$

$$x+5 = 2x-14$$

$$x = 19$$

$$x = 3$$

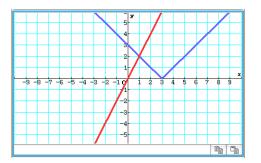
$$-x-5 = 2x-14$$

$$3x = 9$$

$$x = 3$$

Question 19

|x-3| = 2x-x+3 = 2x3x = 3x = 1



x+5 + x-1 =7	
x + 5 + x - 1 = 7	-x-5-x+1=7
2x = 3	-2x = 11
x = 1.5	x = -5.5

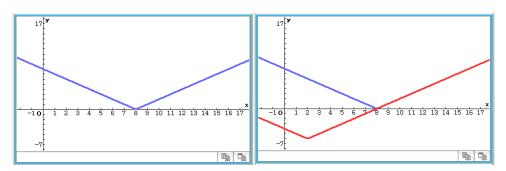
Question 21

	x+5 + x-3 =8
-x-5-x+3=8	x+5+x-3=8
-2x = 10	2x = 6
<i>x</i> = -5	x = 3

 $-5 \le x \le 3$

Question 22

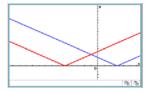
 $x \ge 8$



Question 23

 $|x-3| \ge |x+5|$ $x \le -1$

 $|2x-5| \ge -5$ $x \in \mathbb{R}$

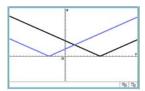


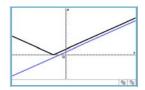


 $|x-11| \ge |x+5|$ $x \le 3$

Question 26

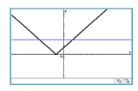
|x+4| > x+2 $x \in \mathbb{R}$





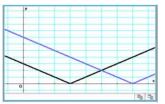
Question 27

|2x+5| > a2(3)+5 = a11 = a-2b-5 = 11b = -8



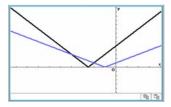
Question 28

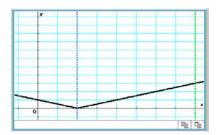
 $|x-3| \le |x-a|$ -5+3=5-a7=a $|x-3| \le |x-7|$



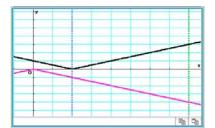
Question 29

|2x+5| = x+a2(-4)+5 = -4+a a = 1|2x+5| < x+1

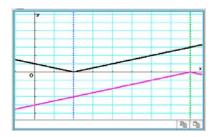




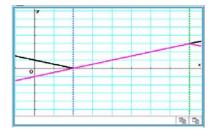
a = -0.5



b = 8



c = 3



$$y = \frac{2}{x}$$

Vertical asymptote at x = 0.

Question 2

$$y = \frac{5}{x - 1}$$

Vertical asymptote at x = 1.

Question 3

$$y = \frac{5}{(x-3)(2x-1)}$$

Vertical asymptotes at $x = 3, x = \frac{1}{2}$.

Question 4

$$y = \frac{x+3}{x-3}$$

Vertical asymptotes at x = 3.

Question 5

$$y = \frac{3}{x}$$

y = 0 cannot be obtained.

$$y = 2 + \frac{3}{x}$$

y = 2 cannot be obtained.

Question 7

$$y = \frac{1}{x+1}$$

y = 0 cannot be obtained.

Question 8

$$y = \frac{x-1}{x+1}$$

y = 1 cannot be obtained.

Question 9

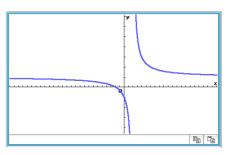
 $y = \frac{1}{x-5}$

As $x \to +\infty$ then $y \to 0^+$ As $x \to -\infty$ then $y \to 0^-$

Question 10

$$y = \frac{x+2}{x-2}$$

As $x \to +\infty$ then $y \to 1^+$ As $x \to -\infty$ then $y \to 1^-$



$$y = \frac{5x^2 + 7x - 3}{x^2 + 6}$$

As $x \to +\infty$ then $y \to 5^+$ As $x \to -\infty$ then $y \to 5^-$

Question 12

 $y = \frac{3x(x+2)}{x^2+1}$

As $x \to +\infty$ then $y \to 3^+$ As $x \to -\infty$ then $y \to 3^-$

Question 13

 $y = \frac{1}{x - 3}$

As $x \to 3^+$ then $y \to +\infty$ As $x \to 3^-$ then $y \to -\infty$

Question 14

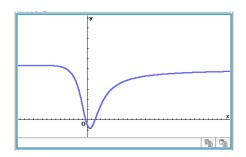
 $y = \frac{1}{1 - x}$

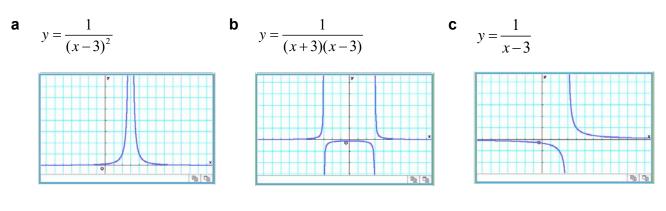
As $x \to 1^+$ then $y \to -\infty$ As $x \to 1^-$ then $y \to +\infty$

Question 15

$$y = \frac{x^5 + 1}{x^2}$$

As $x \to 0^+$ then $y \to +\infty$ As $x \to 0^-$ then $y \to +\infty$

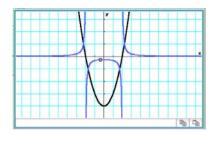




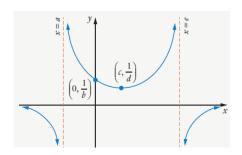
Question 17

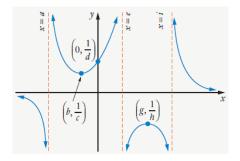
$$y_1 = (x+2) \cdot (x-2)$$

 $y_2 = \frac{1}{(x+2) \cdot (x-2)}$

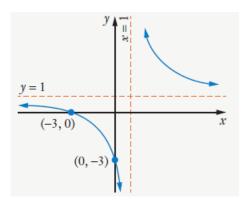


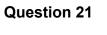
Question 18

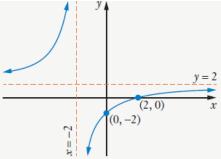




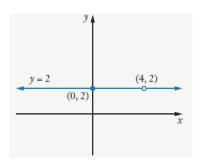
Question 20



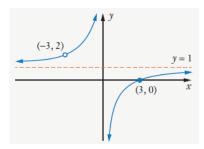




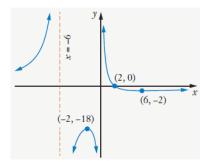
© Cengage Learning Australia Pty Ltd 2019



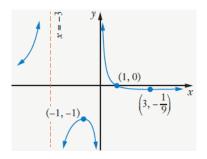
Question 23



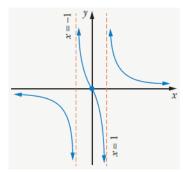
Question 24



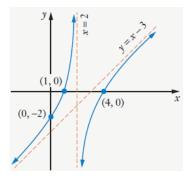
Question 25



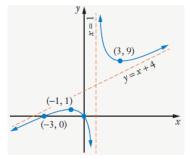
Question 26



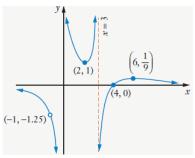
Question 27



Question 28

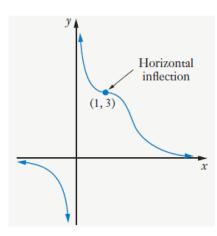


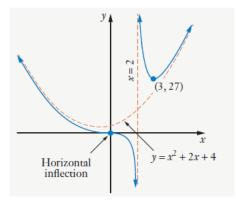
Question 29



© Cengage Learning Australia Pty Ltd 2019

31





Miscellaneous Exercise 3

Question 1

$$x^{3} + 7x^{2} + 19x + 13 = 0$$

(x+1)(x² + 6x + 13) = 0
(x+1) $\left(x + 3 + \frac{1}{2}\sqrt{-16}\right) \left(x + 3 - \frac{1}{2}\sqrt{-16}\right) = 0$
x = -1, -3 + 2i, -3 - 2i

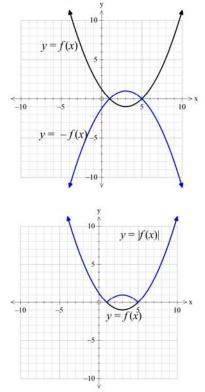
Question 2

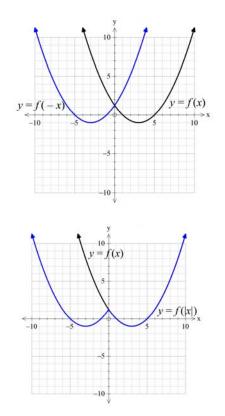
a Asymptotes occur when x-1=0 and x+3=0. a=-3 and b=1.

b

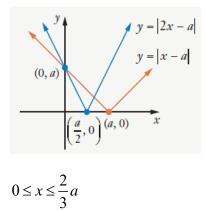
$$y = (x-1)(x+3) = x^{2} + 2x - 3 = (x+1)^{2} - 4$$

When $x = -1$, $y = \frac{1}{(-1-1)(-1+3)} = -\frac{1}{4}$
Point C has coordinates $\left(-1, -\frac{1}{4}\right)$





© Cengage Learning Australia Pty Ltd 2019



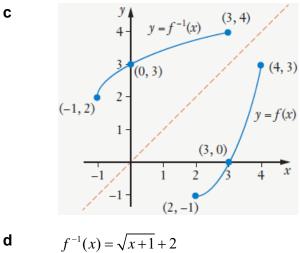
Question 5

Domain $\{x \in \mathbb{R} : 2 \le x \le 4\}$ а

Range $\{y \in \mathbb{R} : -1 \le y \le 3\}$

b Domain $\{x \in \mathbb{R} : -1 \le x \le 3\}$

Range $\{y \in \mathbb{R} : 2 \le y \le 4\}$



 $p\mathbf{a} = q\mathbf{b}$, in order for this to be true p = q = 0а $(p-3)\mathbf{a} = q\mathbf{b}$, in order for this to be true p = 3 and q = 0. b $(p+2)\mathbf{a} = (q-1)\mathbf{b}$, in order for this to be true p = -2 and q = 1. С $p\mathbf{a} + 2\mathbf{b} = 3\mathbf{a} - q\mathbf{b}$, which is only true if p = 3 and q = -2. d $p\mathbf{a} + q\mathbf{a} + p\mathbf{b} - 2q\mathbf{b} = 3\mathbf{a} + 6\mathbf{b}$ е $\begin{cases} p+q=3\\ p-2q=6 \end{cases}$ $3q = -3 \implies q = -1, p = 4$ f $p\mathbf{a} + 2\mathbf{a} - 2p\mathbf{b} = \mathbf{b} + 5q\mathbf{b} - q\mathbf{a}$ $p\mathbf{a} + 2\mathbf{a} - 2p\mathbf{b} = \mathbf{b} + 5q\mathbf{b} - q\mathbf{a}$ Equating coefficients: p + 2 = -q[1] -2p = 1 + 5q[2] Substituting [1] into [2]: -2p = 1 + 5(-p - 2) $3p = -9 \implies p = -3, q = 1$

Question 7

 $\mathbf{a} = -9\mathbf{i} + 21\mathbf{j}$ and $\mathbf{b} = 5\mathbf{i} - 3\mathbf{j}$

a
$$2p + 5q = -9$$

 $4p - 3q = 21$
 $13q = -39 \Rightarrow q = -3, p = 3$
 $-9\mathbf{i} + 21\mathbf{j} = 3\mathbf{a} - 3\mathbf{b}$
b $2p + 5q = 4$
 $4p - 3q = -18$
 $13q = 26 \Rightarrow q = 2, p = -3$
 $4\mathbf{i} - 18\mathbf{j} = -3\mathbf{a} + 2\mathbf{b}$
c $2p + 5q = -7$
 $4p - 3q = 12$
 $13q = -26 \Rightarrow q = -2, p = 1.5$
 $-7\mathbf{i} + 12\mathbf{j} = \frac{3}{2}\mathbf{a} - 2\mathbf{b}$
d $2p + 5q = -34$
 $4p - 3q = 23$
 $13q = -91 \Rightarrow q = -7, p = 0.5$
 $-34\mathbf{i} + 23\mathbf{j} = \frac{1}{2}\mathbf{a} - 7\mathbf{b}$

a

$$z = \frac{3 + 5\sqrt{3}i}{-3 + 2\sqrt{3}i} \times \frac{-3 - 2\sqrt{3}i}{-3 - 2\sqrt{3}i}$$

$$= \frac{-9 - 6\sqrt{3}i - 15\sqrt{3}i - 30i^{2}}{9 - 12i^{2}}$$

$$= \frac{21 - 21\sqrt{3}i}{21} = 1 - \sqrt{3}i$$

$$r = \sqrt{1^2 + (-\sqrt{3})^2} = 2$$
$$\tan \theta = -\sqrt{3}$$
$$\theta = -\frac{\pi}{3}$$
$$z = 2\operatorname{cis}\left(-\frac{\pi}{3}\right)$$

b

е

f

Question 9 $1 \quad 1 \quad (\pi)$

$$\frac{1}{4\operatorname{cis}\left(-\frac{\pi}{6}\right)} = \frac{1}{4}\operatorname{cis}\left(\frac{\pi}{6}\right)$$
$$a = \frac{1}{4}\operatorname{cos}\frac{\pi}{6} = \frac{\sqrt{3}}{8}, \qquad b = \frac{1}{4}\operatorname{sin}\frac{\pi}{6} = \frac{1}{8}$$
$$z = \frac{\sqrt{3}}{8} + i\frac{1}{8}$$

Question 10 p = iz, q = -z, w = -iz

Question 11

$$z = 2 \operatorname{cis} \frac{\pi}{4}$$
 and $w = 1 \operatorname{cis} \frac{\pi}{6}$

а

a
$$zw = 2\operatorname{cis}\left(\frac{\pi}{4} + \frac{\pi}{6}\right) = 2\operatorname{cis}\frac{5\pi}{12}$$

b
$$\frac{z}{4} = 2\operatorname{cis}\left(\frac{\pi}{4} - \frac{\pi}{6}\right) = 2\operatorname{cis}\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$$

$$\frac{z}{w} = 2\operatorname{cis}\left(\frac{\pi}{4} - \frac{\pi}{6}\right) = 2\operatorname{cis}\left(\frac{\pi}{12}\right)$$

С

$$w^2 = 1\operatorname{cis}\left(\frac{\pi}{6} + \frac{\pi}{6}\right) = 1\operatorname{cis}\frac{\pi}{3}$$

d $z^3 = 8 \operatorname{cis} \frac{3\pi}{4}$

$$w^{9} = 1 \operatorname{cis} \frac{9\pi}{6}$$
$$= 1 \operatorname{cis} \frac{3\pi}{2} \text{ (not in the domain)}$$
$$= 1 \operatorname{cis} \left(-\frac{\pi}{2}\right)$$

$$z^9 = 512 \operatorname{cis} \frac{9\pi}{4}$$
 (not in the domain)
= $512 \operatorname{cis} \frac{\pi}{4}$

© Cengage Learning Australia Pty Ltd 2019

36

$$-\sqrt{3} + i = 2 \operatorname{cis} \frac{5\pi}{6}$$
$$\left(-\sqrt{3} + i\right)^{12} = 2^{12} \operatorname{cis} \left(12 \times \frac{5\pi}{6}\right) \text{ (by de Moivre's theorem)}$$
$$= 4096[\cos(0) + i \sin(0)]$$
$$= 4096$$